Table of Contents

DataPlotClasses for Xojo ... 1
Table of Contents .. 1
List of Figures ... 4
List of Tables ... 4
1. Introduction .. 5
2. Getting Started ... 5
3. The Classes ... 6

3.1. Figure .. 7

3.1.1. Properties .. 7
- 3.1.1.1. BackGoundColor ... 7
- 3.1.1.2. EnableMouseEvents .. 7
- 3.1.1.3. FrameColor ... 7
- 3.1.1.4. GraphCount ... 7
- 3.1.1.5. Graphs .. 7
- 3.1.1.6. AntiAlias ... 7

3.1.2. Methods ... 7
- 3.1.2.1. DeselectAll .. 7
- 3.1.2.2. DrawToGraphics ... 8
- 3.1.2.3. Graph .. 8
- 3.1.2.4. IndexOfGraph .. 8
- 3.1.2.5. Initialize .. 8
- 3.1.2.6. Redraw .. 9

3.1.3. Events ... 9
- 3.1.3.1. AutoScale ... 9
- 3.1.3.2. BoxClick .. 9
- 3.1.3.3. FigureClick ... 10
- 3.1.3.4. GraphClick ... 10
- 3.1.3.5. MouseDownBox ... 10
- 3.1.3.6. MouseDownFigure .. 10
- 3.1.3.7. MouseDownGraph .. 10
- 3.1.3.8. MouseDownTrace .. 11
- 3.1.3.9. MouseOverBox .. 11
- 3.1.3.10. MouseOverGraph ... 11
3.1.3.11. MouseOverTrace ... 11
3.1.3.12. TraceClick ... 12
3.2. Graph ... 13
3.2.1. Properties .. 13
 3.2.1.1. AxisLabelSize .. 13
 3.2.1.2. Box .. 13
 3.2.1.3. BoxColor .. 13
 3.2.1.4. BoxFrame .. 13
 3.2.1.5. BoxFrameColor ... 13
 3.2.1.6. BoxSelected .. 13
 3.2.1.7. GraphSelected ... 13
 3.2.1.8. Grid .. 14
 3.2.1.9. GridColor .. 14
 3.2.1.10. Legend .. 14
 3.2.1.11. Limits ... 14
 3.2.1.12. MinorGrid ... 14
 3.2.1.13. MinorGridColor .. 14
 3.2.1.14. MinX, MaxX, MinY, MaxY .. 15
 3.2.1.15. SelectColor ... 15
 3.2.1.16. ShowLegend ... 15
 3.2.1.17.TextColor ... 15
 3.2.1.18. TextFont .. 15
 3.2.1.19. TextLabelCount .. 15
 3.2.1.20. TextLabels .. 15
 3.2.1.21. TickLabelSize ... 15
 3.2.1.22. Title .. 16
 3.2.1.23. TitleSize .. 16
 3.2.1.24. TraceCount .. 16
 3.2.1.25. Traces .. 16
 3.2.1.26. XLabel, YLabel ... 16
 3.2.1.27. XScaleType, YScaleType ... 17
 3.2.1.28. XMinorTick, YMinorTick ... 18
 3.2.1.29. XTick, YTick .. 18
 3.2.1.30. XTickLabel, YTickLabel .. 18
 3.2.1.31. XTickLabelFormat, YTickLabelFormat 18
3.2.2. Methods .. 18
 3.2.2.1. AddTextLabel ... 18
 3.2.2.2. AutoFit, AutoFitX, AutoFitY .. 19
 3.2.2.3. AutoTick, AutoTickX, AutoTickY 19
 3.2.2.4. Initialize .. 19
 3.2.2.5. IndexOfTrace .. 19
 3.2.2.6. Plot .. 19
 3.2.2.7. Pixel2ValueX, Pixel2ValueY ... 20
 3.2.2.8. StemPlot ... 20
 3.2.2.9. SetLimits ... 20
 3.2.2.10. TextLabel ... 20
3.2.2.11. Trace ... 21
3.2.2.12. Value2PixelX, Value2PixelY ... 21
3.3. Trace ... 21
3.3.1. Properties ... 21
 3.3.1.1. DisplayName ... 21
 3.3.1.2. LineColor .. 21
 3.3.1.3. LineStyle .. 21
 3.3.1.4. LineWidth .. 21
 3.3.1.5. MarkerSolid ... 21
 3.3.1.6. MarkerStyle ... 22
 3.3.1.7. MarkerSize ... 22
 3.3.1.8. Selected ... 22
 3.3.1.9. Stem ... 22
 3.3.1.10. x, y .. 22
 3.3.1.11. Visible .. 23
3.4. TextLabel ... 23
 3.4.1. Properties .. 23
 3.4.1.1. Text .. 23
 3.4.1.2. TextColor .. 23
 3.4.1.3. TextFont .. 23
 3.4.1.4. TextSize ... 23
 3.4.1.5. HorizontalAlignment .. 23
 3.4.1.6. VerticalAlignment .. 24
 3.4.1.7. Visible ... 24
 3.4.1.8. x, y ... 24
3.5. Legend .. 25
 3.5.1. Properties .. 25
 3.5.1.1. BoxColor .. 25
 3.5.1.2. BoxFrameColor .. 25
 3.5.1.3. Location .. 25
 3.5.1.4. TextColor .. 25
 3.5.1.5. TextSize ... 25
 3.5.1.6. Visible ... 25
4. Examples .. 26
 4.1. Example 1 .. 26
 4.2. Example 2 .. 28
 4.3. Example 3 .. 30
List of Figures

Figure 1: Getting Started..5
Figure 2: Class Hierarchy. ..6
Figure 3: Classes Overview. ..6
Figure 4: The Box area of a Graph. ..10
Figure 5: Graph Title. ...16
Figure 6: Axis Labels. ..17
Figure 7: Axis Scale Types. ...17
Figure 8: Example 1 ..28
Figure 9: Example 2 ..30
Figure 10: Example 3 ...31

List of Tables

Table 1: Style Arguments ...20
Table 2: Line Styles. ..21
Table 3: Marker Styles ...22
Table 4: Legend Locations ...25
1. Introduction

The DataPlotClasses for Xojo implement an easy way to plot 2D data, similar to the ‘plot’ and ‘stem’ functions’ in MATLAB.

2. Getting Started

Create a new project and drag the DataPlotClasses folder into your project. Then, drag the "Figure" class, which is a subclass of Canvas, into Window1.

Use the following code to generate some data to be plotted. Note that X and Y data values must be in double arrays, and that the dimensions must match.

```plaintext
dim x() as Double
dim y() as Double

for i as integer = 0 to 100
    x.Append i/10
    y.Append 1 + sin(i/10)
next
```

In the simplest case, plotting data only requires three lines of code. Add these lines to your project to plot the data generated by the code above:

```plaintext
Figure1.Initialize ' initialize the figure with one graph
call Figure1.Graph(0).Plot(x,y)
Figure1.Redraw
```

This will result in the following plot.

![Figure 1: Getting Started](image-url)
3. The Classes

The DataPlotClasses for Xojo currently consist of 5 classes. The class hierarchy is as follows:

```
Figure (Canvas)
   Graph
     Legend
     Trace
    TextLabel
```

Figure 2: Class Hierarchy.

Figure is a subclass of Canvas, i.e. it can be added to a project simply by dragging it to a window. A *Figure* can have multiple children of type *Graph*. The method *Figure.Initialize* assigns *Graph* classes to *Figure*. The optional arguments determine the number of *Graphs* and their locations.

Graph is a rectangular area with axes, gridlines, tick marks, labels, etc. It can have children of type *Trace* and *Legend*. A *Graph* can have multiple children of type *Trace*, but only one child of type *Legend*.

Trace is a class that contains the actual data to be plotted. The properties of *Trace* determine the style of the plot.

TextLabel is a class that can be used to place text on a *Graph*.

Legend is a rectangular area within a *Graph*, and it displays a list of labels and styles to identify the *Traces* in *Graph*.

Figure 3 depicts a sample plot with three *Graphs*, each with different subclass elements.
3.1. Figure

3.1.1. Properties

Figure inherits all the properties from its super class *Canvas*. In addition to these, it also implements the following properties:

3.1.1.1. BackGoundColor

```
BackgroundColor as Color = &cC0C0C0
```

Sets or returns the background color of the *Figure*. The default is gray.

3.1.1.2. EnableMouseEvents

```
EnableMouseEvents as Boolean = true
```

Determines whether mouse events such as move and click events will fire.

3.1.1.3. FrameColor

```
FrameColor as Color = &c000000
```

Sets or returns the frame color of the *Figure*. The default is black.

3.1.1.4. GraphCount

```
GraphCount as Integer // Read-Only
```

Returns the number of *Graphs* in the *Figure*.

3.1.1.5. Graphs

```
Graphs() as Graph // Read-Only
```

Returns the collection of *Graphs* in the *Figure* as array.

3.1.1.6. AntiAlias

```
AntiAlias as Boolean = true
```

Determines whether antialiasing is used to render the *Figure*.

3.1.2. Methods

Figure inherits all the methods from its super class *Canvas*. In addition to these, it also implements the following methods.

3.1.2.1. DeselectAll

```
DeselectAll
```

Deselects all selected items in the *Figure* (*Graphs*, *Traces*).
3.1.2.2. DrawToGraphics

| DrawToGraphics(g as Graphics, PreserveAspectRatio as Boolean = False) |

This can be used to print *Figures* or save them as picture. When printing or saving to pictures, the optional argument *PreserveAspectRatio* can be set to *True*. This can be helpful when printing and the aspect ratio of the displayed figure is not the same as the aspect ratio of the paper onto which the figure is to be printed.

E.g. to save a Figure as picture, use the following code:

```vba
Function FileSaveAs() As Boolean
    // Create Picture to be saved
    dim p as new Picture(Figure1.Width, Figure1.Height, 32)
    dim g as Graphics = p.Graphics

    // Draw Figure
    Figure1.DrawToGraphics(g)

    // Save Picture
    Dim f as FolderItem = GetFolderItem("Graph.png")
    if f <> nil then p.Save(f, picture.SaveAsPNG)
End Function
```

3.1.2.3. Graph

| Graph(NoOfGraph as integer) as Graph |

Returns the Graph specified by index *NoOfGraph*.

3.1.2.4. IndexOfGraph

| IndexOfGraph(gr as Graph) as integer |

Returns the index of the *Graph* (*gr*) in the collection of *Graphs* in the *Figure*.

3.1.2.5. Initialize

| Initialize(NoOfGraphs as integer = 0) |

Deletes all the items from the *Figure* and adds *NoOfGraphs* (zero-based) to the *Figure*. If *NoOfGraphs* is omitted or equal to 0, one *Graph* is added to the *Figure*. For values greater than 0, the *Graphs* are automatically positioned in the *Figure*, in a way such that the number of rows and columns are equal, or only differ by no more than 1, where the number of columns is the larger number.
Initialize

Initialize(Rows as integer, Columns as integer)

By passing two integer values (both zero-based), the number of Graphs vertically and horizontally can be defined.

Examples:

```
Figure1.Initialize(5) // creates a figure with 3 columns and 2 rows, automatically
Figure1.Initialize(2,1) // creates a figure with 2 columns and 3 rows
```

3.1.2.6. Redraw

Redraw

Forces the Figure contents to be redrawn. This is a thread-safe call and is the only method that should be used to redraw the figure. Use **DrawToGraphics** to print Figures or save them as picture.

3.1.3. Events

Figure inherits nearly all the events from its super class **Canvas**. In addition to these, it also implements the following events.

3.1.3.1. AutoScale

AutoScale(gr as graph, Axis as integer)

Fires whenever a Graph has been autoscaled. The Graph that was scaled as well as the affected Axis are passed as arguments. The values for Axis are either 0 (for x-axis) or 1 (for y-axis).

3.1.3.2. BoxClick

BoxClick(gr as graph, x as integer, y as integer, xVal as double, yVal as double)

Fires when the Box area (the rectangular area containing the traces) of a Graph is clicked (mouse button pressed and released). Passes the current Graph (gr), the pixel coordinates (x,y), as well as the data coordinates (xVal,yVal) of the location where the click occurred. Returning True prevents the GraphClick event from firing afterwards.

Figure 4 shows the Box area of a Graph, marked red.
3.1.3.3. FigureClick

`FigureClick(x as integer, y as integer)`

Fires when the `Figure` is clicked (mouse button pressed and released). Passes the pixel coordinates (x,y) of the location where the click occurred.

3.1.3.4. GraphClick

`GraphClick(gr as graph, x as integer, y as integer) As Boolean`

Fires when a `Graph` is clicked (mouse button pressed and released), outside the Box (Labels, Title, etc) as well as inside the Box (rectangular area with traces). Returning `True` prevents the `FigureClick` event from firing afterwards.

3.1.3.5. MouseDownBox

`MouseDownBox(gr as graph, x as integer, y as integer, xVal as double, yVal as double) As boolean`

Fires when the mouse button is pressed down inside the area of the box (the rectangular area containing the traces) of a `Graph`. Passes the current `Graph` (gr), the pixel coordinates (x,y), as well as the data coordinates (xVal,yVal) of the location where the mouse was pressed. Returning `True` prevents the `MouseDownGraph` event from firing afterwards.

3.1.3.6. MouseDownFigure

`MouseDownFigure(x as integer, y as integer) As boolean`

Fires when the mouse button is pressed down inside the `Figure`. Passes the pixel coordinates (x,y) of the location where the mouse button was pressed.

3.1.3.7. MouseDownGraph

`MouseDownGraph(gr as graph, x as integer, y as integer, xVal as double, yVal as double) As boolean`

Fires when the mouse button is pressed down inside a `Graph`. Passes the current `Graph` (gr), the pixel coordinates (x,y), as well as the data coordinates
The Classes - Figure

(xVal,yVal) of the location where the mouse was pressed. Returning True prevents the MouseDownFigure event from firing afterwards.

3.1.3.8. MouseDownTrace

MouseDownTrace(gr as graph, t as trace, x as integer, y as integer, xVal as double, yVal as double, DPoint as integer) As boolean

Fires when the mouse button is pressed down inside a Graph. Passes the current Graph (gr), the current Trace (t), the current pixel coordinates (x,y), the current data coordinates (xVal,yVal) of the location where the mouse was pressed. If the mouse was pressed on an actual data point, DPoint contains the index of the data point within the t.x() and t.y() value arrays of the Trace (t), otherwise DPoint assumes the value -1. Returning True prevents the MouseDownBox event from firing afterwards.

3.1.3.9. MouseOverBox

MouseOverBox(gr as graph, x as integer, y as integer, xVal as double, yVal as double) As Boolean

Fires when the mouse is moving over the Box area of a Graph. Passes the current Graph (gr), the current pixel coordinates (x,y), as well as the current data coordinates (xVal,yVal) of the currently displayed data range. Returning True prevents the MouseOverGraph event from firing.

3.1.3.10. MouseOverGraph

MouseOverGraph(gr as graph, x as integer, y as integer) As Boolean

Fires when the mouse is moving over a Graph. Passes the Graph (gr) and the current pixel coordinates (x,y). Returning True prevents the MouseMove event of from firing afterwards.

3.1.3.11. MouseOverTrace

MouseOverTrace(gr as graph, t as trace, x as integer, y as integer, xVal as double, yVal as double, DPoint as integer) As Boolean

Fires when the mouse is moving over a Trace (line or marker). Passes the current Graph (gr), the current Trace (t), the current pixel coordinates (x,y), as well as the current data coordinates (xVal,yVal). If the mouse is over an actual data point, DPoint contains the index of the data point within the t.x() and t.y() value arrays of the Trace (t), otherwise DPoint assumes the value -1. Returning True prevents the MouseOverBox event from firing.
3.1.3.12. TraceClick

| TraceClick(gr as graph, t as trace, x as integer, y as integer, xVal as double, yVal as double, DPoint as integer) As Boolean |

Fires when a Trace is clicked (mouse button pressed and released). Passes the current Graph (gr), the current Trace (t), the current pixel coordinates (x,y), as well as the current data coordinates (xVal,yVal). If the click occurred on an actual data point, DPoint contains the index of the data point within the t.x() and t.y() value arrays of the Trace (t), otherwise DPoint assumes the value -1. Returning True prevents the BoxClick event from firing.
3.2. Graph

3.2.1. Properties

3.2.1.1. AxisLabelSize

| AxisLabelSize As Integer = 14 |
Sets or returns the font size for Axis Labels.

3.2.1.2. Box

| Box As Boolean = true |
Turns the box on or off. If this property is true, the box is drawn as a filled rectangle in the color defined in BoxColor.

3.2.1.3. BoxColor

| BoxColor As Color = &cFFFF |
Sets or returns the color of the Box. Default is white.

3.2.1.4. BoxFrame

| BoxFrame As Boolean = true |
Turns the Box Frame on or off. If this property is true, the box frame is drawn as a rectangle in the color defined in BoxFrameColor.

3.2.1.5. BoxFrameColor

| BoxFrameColor As color = &c000000 |
Sets or returns the color of the Box Frame. Default is black.

3.2.1.6. BoxSelected

| BoxSelected As Boolean = false |
If this property is true, the box is selected. This can also be used to select or deselect the box. If the box is selected, a selection frame will be drawn around the box.

3.2.1.7. GraphSelected

| GraphSelected As Boolean = false |
If this property is true, the Graph is selected. This can also be used to select or deselect the Graph. If the Graph is selected, a selection frame will be drawn around the Graph.
3.2.1.8. Grid

Grid As Boolean = true

Determines whether a grid is drawn or not. If this property is true, grid lines will be drawn in the color defined in GridColor and at the X and Y values specified in XTick() and YTick().

3.2.1.9. GridColor

GridColor As color = &cC0C0C0

Sets or returns the color of the grid lines. The default is gray.

3.2.1.10. Legend

Legend as Legend // Read-Only

Returns the Legend of the Graph so that its properties can be accessed.

3.2.1.11. Limits

Limits(3) as double

A double array with 4 elements holding the X and Y axis limits:

Limits(0) = MinX
Limits(1) = MaxX
Limits(2) = MinY
Limits(3) = MaxY

Whenever axis limits are assigned using this property, AutoTick is executed automatically.

3.2.1.12. MinorGrid

MinorGrid As Boolean = true

Determines whether a minor grid is drawn or not. If this property is true, minor grid lines will be drawn in the color defined in MinorGridColor and at the X and Y values specified in XMinorTick() and YMinorTick().

3.2.1.13. MinorGridColor

MinorGridColor As color = &cDFDFDF

Sets or returns the color of the grid lines. The default is light gray.
3.2.1.14. MinX, MaxX, MinY, MaxY

| MinX as double |
| MaxX as double |
| MinY as double |
| MaxY as double |

Properties to individually access the axis limits.

3.2.1.15. SelectColor

| SelectColor As Color = &c9FCFFF |

Sets or returns the color used to display selected items in the Graph. Default is light blue.

3.2.1.16. ShowLegend

| ShowLegend as Boolean = false |

Determines whether the Legend is drawn or not. If this property is true, the Legend will be drawn at the location specified by Legend.Location.

3.2.1.17. TextColor

| TextColor As Color = &c000000 |

Sets or returns the color used to display text in the Graph (Title, Axes, Labels, etc). Default is black.

3.2.1.18. TextFont

| TextFont As String = "Arial" |

Sets or returns the font used to display text in the Graph (Title, Axes, Labels, Legend, etc). Default is “Arial”.

3.2.1.19. TextLabelCount

| TextLabelCount as integer // Read-Only |

Returns the number of children of type TextLabel.

3.2.1.20. TextLabels

| TextLabels() as Trace // Read-Only |

Returns the collection of TextLabels in the Graph.

3.2.1.21. TickLabelSize

| TickLabelSize As Integer = 12 |

Sets or returns the font size used for tick mark labels.
3.2.1.22. Title

| Title As String = "" |

Sets or returns the title of the Graph. If this String is left empty, no title will be drawn and the area otherwise occupied by the title is used to expand the Graph, as shown in Figure 5.

![Figure 5: Graph Title.](image)

3.2.1.23. TitleSize

| TitleSize As Integer = 18 |

Sets or returns the font size used to draw the Graph title.

3.2.1.24. TraceCount

| TraceCount as integer // Read-Only |

Returns the number of children of type Trace.

3.2.1.25. Traces

| Traces() as Trace // Read-Only |

Returns the collection of Traces in the Graph.

3.2.1.26. XLabel, YLabel

| XLabel As String = "" |
| YLabel As String = "" |

Sets or returns the labels of the axes of the Graph. If these Strings are left empty, no labels will be drawn, and the area otherwise occupied by the labels is used to expand the Graph, as shown in Figure 6.
3.2.1.27. XScaleType, YScaleType

<table>
<thead>
<tr>
<th>XScaleType as integer</th>
<th>YScaleType as integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Determines the scale type of each axis:

- 0: linear
- 1: logarithmic

The axis scale type can be set individually for each axis. The different combinations are shown in Figure 7.

Whenever the scale type of an axis is set, **AutoFit** is automatically executed for this axis.
3.2.1.28. XMinorTick, YMinorTick

| XMinorTick() as double | YMinorTick() as double |

Arrays of type `Double`, one for each axis. The array elements determine where tick marks and grid lines are drawn. The `AutoTick` functions can be used to automatically populate these arrays.

3.2.1.29. XTick, YTick

| XTick() as double | YTick() as double |

Arrays of type `Double`, one for each axis. The array elements determine where tick marks and grid lines are drawn. The `AutoTick` functions can be used to automatically populate these arrays. Whenever these arrays are written (manually or automatically), the corresponding tick label arrays (`XTickLabel()` and `YTickLabel()` are automatically generated to match the values in `XTick()` and `YTick()`.

3.2.1.30. XTickLabel, YTickLabel

| XTickLabel() As String | YTickLabel() As String |

Arrays of type `String`, one for each axis. The array elements are `strings` that are drawn next to the corresponding tick marks defined in `XTick()` that `YTick()`. Whenever values are assigned to `XTick()` or `YTick()`, the corresponding tick label arrays are automatically generated.

3.2.1.31. XTickLabelFormat, YTickLabelFormat

| XTickLabelFormat As String = "" | YTickLabelFormat As String = "" |

If not set to an empty `string`, defines the number format used for the axis tick labels. Refer to Xojo’s user reference for the `Str` or `Format` commands for available format specifications.

3.2.2. Methods

3.2.2.1. AddTextLabel

| AddTextLabel(Text as String, x as double, y as double) as TextLabel |

Creates a new `TextLabel` at the passed coordinates `(x,y)` with the passed `Text`.
3.2.2.2. AutoFit, AutoFitX, AutoFitY

The **AutoFit** methods are used to automatically select the axis limits such that all the data of all the **Traces** assigned to the **Graph** is plotted. Automatic fitting can be done for each axis individually (**AutoFixX** or **AutoFixY**), or both axes simultaneously (**AutoFit**).

For *linear* axis scales, the limits are rounded to the next 2nd most significant digit. For *logarithmic* axis scales, the limits are rounded to the next decade.

Whenever an **AutoFit** Method is executed, the corresponding **AutoTick** method is executed as well.

3.2.2.3. AutoTick, AutoTickX, AutoTickY

The **AutoTick** methods are used to automatically populate the **XTick**() and **YTick**() arrays. For *linear* axis scales, the axes are divided into 10 equal segments. For *logarithmic* axis scales, each decade along the axis is divided into 10 equal segments.

Calling an **AutoTick** method causes the corresponding tick label array to be populated automatically.

3.2.2.4. Initialize

Initialize()

Removes the **Legend** and **Traces** from the **Graph**. Returns all the colors and display settings to their defaults.

3.2.2.5. IndexOfTrace

IndexOfTrace(t as trace) as integer

Returns the index of the passed **Trace** in the **Graph**’s collection of **Traces**.

3.2.2.6. Plot

Plot(x() as double, y() as double, Style as string = """) as trace

Plot(y() as double, Style as string = "") as trace

Plots the values in y() versus the values in x(). If x() is omitted, incrementing integer values starting at 0 are used instead. Similar to its MATLAB counterpart, an optional **Style** argument can be passed. **Style** is a space-separated string of style arguments for both the trace and the markers. The options are as follows:
DataPlotClasses for Xojo

<table>
<thead>
<tr>
<th>Line Style</th>
<th>Marker Style</th>
<th>Line Color</th>
<th>Line Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>point</td>
<td>b</td>
<td>1..9 pixels</td>
</tr>
<tr>
<td>:</td>
<td>circle</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>x</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>*</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>s</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>t</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Style Arguments.

Example:

```
t = Figure1.Graph(0).Plot(x, y, "- o r 2")
```

This plots a red solid line with circle markers, with a width of 2.

Each time `Graph.Plot` is called, a new Trace is added to Graph. `Graph.Plot` returns the Trace (t) that was added to the Graph.

3.2.2.7. Pixel2ValueX, Pixel2ValueY

Pixel2ValueX

```
Pixel2ValueX(x as integer) as double
```

Converts pixel coordinates to data coordinates, according to the axis limits and the axis type.

Pixel2ValueY

```
Pixel2ValueY(y as integer) as double
```

3.2.2.8. StemPlot

```
StemPlot(x() as double, y() as double) as trace
```

Draws a Stem Plot for the values in y() versus the values in x(). If x() is omitted, incrementing integer values starting at 0 are used instead.

Each time `Graph.StemPlot` is called, a new Trace is added to Graph. `Graph.StemPlot` returns the Trace (t) that was added to the Graph.

3.2.2.9. SetLimits

```
SetLimits(minX as double, maxX as double, minY as double, maxY as double)
```

Sets the axis limits. Calling this method also executes `AutoTick`.

3.2.2.10. TextLabel

```
TextLabel(index as integer) as TextLabel
```

Returns the TextLabel from the Graph’s collection of TextLabels, specified by index.
3.2.2.11. Trace

\[\text{Trace}(\text{index as integer}) \rightarrow \text{Trace} \]

Returns the \textit{Trace} from the \textit{Graph}'s collection of \textit{Traces}, specified by \textit{index}.

3.2.2.12. Value2PixelX, Value2PixelY

\[
\begin{align*}
\text{Value2PixelX}(\text{xVal as double}) & \rightarrow \text{integer} \\
\text{Value2PixelY}(\text{yVal as double}) & \rightarrow \text{integer}
\end{align*}
\]

Converts data coordinates to pixels coordinates, according to the axis limits and the axis type.

3.3. Trace

3.3.1. Properties

3.3.1.1. DisplayName

\[
\text{DisplayName As String} = ""
\]

This is the name of the \textit{Trace} that is displayed in the \textit{Legend}.

3.3.1.2. LineColor

\[
\text{LineColor As Color}
\]

Sets or returns the color of the \textit{Trace}.

3.3.1.3.LineStyle

\[
\text{LineStyle As Integer} = 0
\]

Sets or returns the line style of the \textit{Trace}.

\[
\begin{align*}
\text{Line Style} & \\
0 & \text{solid} \\
1 & \text{dotted} \\
2 & \text{slash-dotted} \\
3 & \text{dashed} \\
4 & \text{none}
\end{align*}
\]

\textit{Table 2: Line Styles.}

3.3.1.4. LineWidth

\[
\text{LineWidth As Integer} = 1
\]

Sets or returns the thickness of the \textit{Trace} line in pixels.

3.3.1.5. MarkerSolid

\[
\text{MarkerSolid As Boolean} = \text{false}
\]
This property determines whether markers that are polygons (circle, square, diamond, triangle) are drawn solid or outlined only.

3.3.1.6. MarkerStyle

<table>
<thead>
<tr>
<th>MarkerStyle As Integer = 8</th>
</tr>
</thead>
</table>

Sets or returns the style of the Marker.

<table>
<thead>
<tr>
<th>Marker Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 point</td>
</tr>
<tr>
<td>1 circle</td>
</tr>
<tr>
<td>2 x</td>
</tr>
<tr>
<td>3 plus</td>
</tr>
<tr>
<td>4 star</td>
</tr>
<tr>
<td>5 square</td>
</tr>
<tr>
<td>6 diamond</td>
</tr>
<tr>
<td>7 triangle</td>
</tr>
<tr>
<td>8 none</td>
</tr>
</tbody>
</table>

Table 3: Marker Styles.

3.3.1.7. MarkerSize

<table>
<thead>
<tr>
<th>MarkerSize As Integer = 7</th>
</tr>
</thead>
</table>

Sets or returns the size of the Marker in pixels.

3.3.1.8. Selected

<table>
<thead>
<tr>
<th>Selected As Boolean = false</th>
</tr>
</thead>
</table>

If this property is *true*, the *Trace* is selected. This can also be used to select or deselect the *Trace*. If the *Trace* is selected, it will be drawn wider and in a different color.

3.3.1.9. Stem

<table>
<thead>
<tr>
<th>Stem As Boolean = false</th>
</tr>
</thead>
</table>

If this property is *true*, the *Trace* is drawn with stems at each datapoint. When adding a *Trace* to a *Graph* using the *Graph.StemPlot* method, this property is set to *true* for the added *Trace*.

3.3.1.10. x, y

<table>
<thead>
<tr>
<th>x() As double</th>
</tr>
</thead>
<tbody>
<tr>
<td>y() As double</td>
</tr>
</tbody>
</table>

These arrays contain the actual data of the trace. The values are usually automatically assigned to these arrays via the `Graph.Plot` method.

3.3.11. Visible

| Visible As Boolean = true |

If this property is `true`, the `Trace` is visible. If this property is `false`, the `Trace` will be hidden.

3.4. TextLabel

3.4.1. Properties

3.4.1.1. Text

| Text As String = “” |

This is the `Text` of the `TextLabel` that will be drawn in the `Graph`.

3.4.1.2. TextColor

| TextColor As Color = &c000000 |

Sets or returns the color used to display the `TextLabel`. Default is black.

3.4.1.3. TextFont

| TextFont As String = “Arial” |

Sets or returns the font used to display text in the `Graph` (Title, Axes, Labels, Legend, etc). Default is “Arial”.

3.4.1.4. TextSize

| TextSize as integer = 12 |

Sets or returns the font size used for the `TextLabel`.

3.4.1.5. HorizontalAlignment

| HorizontalAlignement as integer =TextLabel.kHorizontalAlignmentLeft |

Sets or returns the horizontal text alignment used to display the `TextLabel`. Valid values are:

- `TextLabel.kHorizontalAlignmentLeft`
- `TextLabel.kHorizontalAlignmentCenter`
- `TextLabel.kHorizontalAlignmentRight`
3.4.1.6. VerticalAlignment

| VerticalAlignment as integer = TextLabel.kVerticalAlignmentBottom |

Sets or returns the vertical text alignment used to display the `TextLabel`. Valid values are:

- `TextLabel.kVerticalAlignmentBottom`
- `TextLabel.kVerticalAlignmentMiddle`
- `TextLabel.kVerticalAlignmentTop`

3.4.1.7. Visible

| Visible as integer = false |

Determines whether the `TextLabel` is drawn or not. The default is `false`.

3.4.1.8. x, y

| x as double = 0 |
| y as double = 0 |

Sets or returns the coordinates of the `TextLabel`.
3.5. Legend

3.5.1. Properties

3.5.1.1. BoxColor

| BoxColor As Color = &cFFFFFF |

Sets or returns the color of the Box of the Legend. Default is white.

3.5.1.2. BoxFrameColor

| BoxFrameColor As Color = &c000000 |

Sets or returns the color of the Box Frame of the Legend. Default is black.

3.5.1.3. Location

| Location as integer = 0 |

Sets or returns the location of the Legend in the Graph.

Table 4: Legend Locations.

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>top right</td>
</tr>
<tr>
<td>1</td>
<td>top left</td>
</tr>
<tr>
<td>2</td>
<td>bottom right</td>
</tr>
<tr>
<td>3</td>
<td>bottom left</td>
</tr>
<tr>
<td>4</td>
<td>top</td>
</tr>
<tr>
<td>5</td>
<td>bottom</td>
</tr>
<tr>
<td>6</td>
<td>right</td>
</tr>
<tr>
<td>7</td>
<td>left</td>
</tr>
</tbody>
</table>

3.5.1.4. TextColor

| TextColor As Color = &c000000 |

Sets or returns the color used to display text in the Legend. Default is black.

3.5.1.5. TextSize

| TextSize as integer = 11 |

Sets or returns the font size used for the Legend.

3.5.1.6. Visible

| Visible as integer = false |

Determines whether the Legend is drawn or not. The default is false.
4. Examples
The following examples use the following routine to create linear arrays of type double:

```vbnet
Function MakeRange(StartVal as double, StopVal as double, Interval as double) As double()
    // Creates an array of doubles, starting at StartVal and ending at StopVal,
    // with increments of Interval
    dim r() as double
    if Interval = 0 then
        r.Append StartVal
        r.Append StopVal
        return r
    end if
    dim NoOfSteps as integer = Floor((StopVal-StartVal) / Interval)
    for i as integer = 0 to NoOfSteps
        r.Append StartVal + i*interval
    next
    return r
End Function
```

4.1. Example 1

Code:

```vbnet
// Generate Some Data
dim x1() as double
dim x2() as double
dim x3() as double
dim y1() as double
dim y2() as double
dim y3() as double
dim y4() as double
dim y5() as double
dim y6() as double
dim y7() as double
dim y8() as double
dim y9() as Double
dim y10() as Double

x1 = MakeRange(0,10,1)
for i as integer = 0 to UBound(x1)
    y1.Append 1 + (x1(i)*0.5)^2
    y2.append y1(i) / 2
next

x2 = MakeRange(0,6.3,0.1)
for i as integer = 0 to UBound(x2)
    y3.Append 5*sin(x2(i))
    y4.Append 3*sin(x2(i)*2)
next
```
x3 = MakeRange(0.95,0.05)
for i as integer = 0 to UBound(x3)
y5.Append sin(x3(i)*10) * x3(i) + 8
y6.Append 5 * (sin(x3(i)) + 1/3*sin(3*x3(i)) + 1/5*sin(5*x3(i)) _
+ 1/7*sin(7*x3(i)) + 1/9*sin(9*x3(i))) + 5
next

for i as integer = 0 to UBound(x1)
y7.Append 20 * exp(-x1(i))
y8.Append Sqrt(40*x1(i))
y9.Append 20 - 2*i
y10.Append 20
next

// Plot data
Figure1.Initialize(0)
dim t as trace
dim g as graph = Figure1.Graph(0)
t = g.Plot(x1,y1,"0 o--")
t.DisplayName = "Trace 1"
t = g.Plot(x1,y2,"t :")
t.DisplayName = "Trace 2"
t = g.Plot(x2,y3, "n .")
t.DisplayName = "Trace 3"
t = g.Plot(x2,y4,"3")
t.DisplayName = "Trace 4"
t = g.Plot(x3,y5)
t.DisplayName = "Trace 5"
t = g.Plot(x3,y6)
t.DisplayName = "Trace 6"
t = g.Plot(x1,y7,"n x")
t DisplayName = "Trace 7"
t.MarkerSize = 11 ' custom marker size
t = g.Plot(x1,y8,"- . s")
t.DisplayName = "Trace 8"
t.LineColor = &c007700 ' custom color
t = g.Plot(x1,y9,"n +")
t.DisplayName = "Trace 9"
t = g.Plot(x1,y10,"*")
t.DisplayName = "Trace 10"

// Labels and Title
g.XLabel = "X Values"
g.YLabel = "Y Values"
g.Title = "Example Graph"

// Show Legend
g.Legend.Location = 1
g.ShowLegend = true

Figure1.Redraw
Result:

![Example Graph](image)

Figure 8: Example 1.

4.2. Example 2

Code:

```vbnet
// Generate Some Data
    Dim x1() As Double
    Dim x2() As Double
    Dim x3() As Double
    Dim y1() As Double
    Dim y2() As Double
    Dim y3() As Double
    Dim y4() As Double
    Dim y5() As Double
    Dim y6() As Double
    Dim y7() As Double
    Dim y8() As Double
    Dim y9() As Double
    Dim y10() As Double

    x1 = MakeRange(0, 10, 1)
    For i As Integer = 0 To UBound(x1)
        y1(i) = 1 + (x1(i) * 0.5)^2
        y2(i) = y1(i) / 2
    Next

    x2 = MakeRange(0, 6.3, 0.1)
    For i As Integer = 0 To UBound(x2)
        y3(i) = 5 * Sin(x2(i))
        y4(i) = 3 * Sin(x2(i) * 2)
    Next
```
x3 = MakeRange(0.95,0.05)
for i as integer = 0 to UBound(x3)
y5.Append sin(x3(i)*10) * x3(i) + 8
y6.Append 5 * (sin(x3(i)) + 1/3*sin(3*x3(i)) + 1/5*sin(5*x3(i)) +
1/7*sin(7*x3(i)) + 1/9*sin(9*x3(i))) + 5
next

for i as integer = 0 to UBound(x1)
y7.Append 20 * exp(-x1(i))
y8.Append Sqrt(40*x1(i))
y9.Append 20 - 2*i
y10.Append 20
next

// Plot data
Figure1.Initialize(2) // We want 3 Graphs

dim t as trace
dim g as graph = Figure1.Graph(0)
t = g.Plot(x1,y1," 0 o--")
t.DisplayName = "Trace 1"
t = g.Plot(x1,y2,"t :")
t.DisplayName = "Trace 2"
t = g.Plot(x2,y3, "n .")
t.DisplayName = "Trace 3"
t = g.Plot(x2,y4,"3")
g = Figure1.Graph(1)
t.DisplayName = "Trace 4"
t = g.Plot(x3,y5)
t.DisplayName = "Trace 5"
t = g.Plot(x3,y6)
g = Figure1.Graph(2)
t.DisplayName = "Trace 6"
t = g.Plot(x1,y7, "n x")
t.DisplayName = "Trace 7"
t.MarkerSize = 11 ' custom marker size
t = g.Plot(x1,y8,"--. s")
t.DisplayName = "Trace 8"
tLineColor = &c007700 ' custom color
t = g.Plot(x1,y9,"n +")
t.DisplayName = "Trace 9"
t = g.Plot(x1,y10,"*")
t.DisplayName = "Trace 10"

// Labels, Title and Legend
for i as integer = 0 to 2
g = Figure1.Graph(i)
g.XLabel = "X Values"
g.YLabel = "Y Values"
g.Title = "Example Graph"
g.Legend.Location = 1
g.ShowLegend = true
next

Figure1.Redraw
Result:

![Example Graphs](image)

Figure 9: Example 2.

4.3. Example 3

_Code:

```vba
// Generate Some Data
dim x1() as double
dim y1() as double
dim y2() as Double

x1 = MakeRange(0.1,99.9,0.1)
for i as integer = 0 to UBound(x1)
    y1.Append 1/x1(i)
    y2.Append 2 + log(x1(i))/log(10)
next

// Plot data
Figure1.Initialize(0)
dim t as trace
dim g as Graph = Figure1.Graph(0)
g.xScaleType = 1
g.yScaleType = 1
```
```

t = g.Plot(x1,y1,"o --")
t.DisplayName = "Trace 1"
t = g.Plot(x1,y2,"r")
t.DisplayName = "Trace 2"

// Labels and Title
g.XLabel = "X Values"
g.YLabel = "Y Values"
g.Title = "Example Graph"

// Show Legend

g.ShowLegend = true

Figure1.Redraw
```

Result:

![Example Graph](image)

Figure 10: Example 3.